Indian Statistical Institute, Bangalore

M. Math. Second Year, Second Semester

Advanced Functional Analysis

Mid-terms Examination

Maximum marks: 100

Date: 04-03-2015 Time: 3 hours

- (1) Let X be a topological vector space over the field \mathbb{C} . Suppose $f: X \to \mathbb{C}$ is a linear functional. Show that f is continuous if and only if $\ker(f) = \{x \in X : f(x) = 0\}$ is closed in X. [10]
- (2) Suppose K is a compact subset of a topological vector space Z. Show that K K is compact. [10]
- (3) Let X be a separable Banach space with countable dense set $\{x_n : n \ge 0\}$. For $n \ge 1$, let f_n be a linear functional on X satisfying $f_n(x_n) = ||x_n||$, and $||f_n|| = 1$. Define $T : X \to l^{\infty}$ by $T(x) = (f_1(x), f_2(x), \ldots)$. Show that T is an isometry. [This proves that every separable Banach space is isometrically isomorphic to a subspace of l^{∞} .] [20]
- (4) Let X, Y be normed linear spaces and let X be finite dimensional. Suppose $T: X \to Y$ is a linear map. Show that T is continuous. [20]
- (5) Let X, Y be Banach spaces. Let $T: X \to Y$ be a bounded linear map and T is onto. Show that T is an open map. [20]
- (6) Let V be a topological vector space. A non-empty subset A of V is said to be *absorbing* if for each $x \in V$, there exists t > 0 such that $\frac{x}{t}$ is in A. Show that every open neighborhood of 0 is absorbing. Show that every $y \neq 0$ has an open neighborhood which is not absorbing. [20]
- (7) Let C[0,1] be the Banach space of complex valued continuous functions on the interval, with supremum norm. Let $C_0[0,1]$ be the subspace:

$$C_0[0,1] = \{ f \in C[0,1] : f(0) = 0 \}.$$

Identify the set of extreme points of closed unit balls of C[0,1] and $C_0[0,1]$. [10]